博客
关于我
异步多线程处理
阅读量:437 次
发布时间:2019-03-06

本文共 805 字,大约阅读时间需要 2 分钟。

多线程请求处理与性能数据收集系统

本系统采用多线程异步模型,通过同时打开多个连接,提升网络请求的吞吐量。每个请求独立执行,减少了等待时间,显著提高了整体处理效率。

功能描述

  • 多线程异步模型:采用threading模块创建多个独立的请求线程,每个线程负责单独完成一次HTTP请求。
  • 性能数据收集:每次请求完成后,系统会记录相应的性能数据,包括响应时间、状态码、成功率、异常率以及异常信息。
  • 全局统计变量:通过全局变量totalsucfailexceptiongt3lt3实时统计网络请求的成功率、失败率、异常率以及响应时间的长短分布。
  • 响应时间分析:每个线程完成请求后,会调用maxtimemintime方法,分别更新最大响应时间和最小响应时间的记录。
  • 异常处理:在请求过程中,若发生异常,系统会记录异常信息并继续执行后续统计。
  • 系统流程

  • 线程创建:通过RequestThread类创建多个线程,每个线程负责执行一次HTTP请求。
  • 请求执行:每个线程通过requests.get发送HTTP请求,获取服务器响应。
  • 状态判断:根据响应状态码判断请求是否成功,并更新相应的统计变量。
  • 时间记录:记录每次请求的开始时间和结束时间,计算响应时间。
  • 异常捕获:捕获异常信息,更新异常统计。
  • 时间分析:将每次请求的响应时间与全局记录进行比较,更新最大值和最小值。
  • 优势分析

  • 线程异步模型:通过多线程技术,系统能够同时处理多个请求,大幅提升吞吐量。
  • 响应时间跟踪:实时跟踪每次请求的响应时间,能够快速发现网络延迟或服务器性能问题。
  • 可扩展性:系统架构支持动态添加/删除线程,适用于不同负载场景。
  • 统计与分析:通过全局统计变量,系统能够提供丰富的性能数据,便于后续分析和优化。
  • 本系统通过多线程异步模型和灵活的数据收集机制,能够高效处理大量HTTP请求,并提供详尽的性能数据分析,是一个高效且灵活的网络请求处理系统。

    转载地址:http://bcjyz.baihongyu.com/

    你可能感兴趣的文章
    Nuget~管理自己的包包
    查看>>
    NuGet学习笔记001---了解使用NuGet给net快速获取引用
    查看>>
    nullnullHuge Pages
    查看>>
    NullPointerException Cannot invoke setSkipOutputConversion(boolean) because functionToInvoke is null
    查看>>
    null可以转换成任意非基本类型(int/short/long/float/boolean/byte/double/char以外)
    查看>>
    Number Sequence(kmp算法)
    查看>>
    Numix Core 开源项目教程
    查看>>
    numpy
    查看>>
    NumPy 库详细介绍-ChatGPT4o作答
    查看>>
    NumPy 或 Pandas:将数组类型保持为整数,同时具有 NaN 值
    查看>>
    numpy 或 scipy 有哪些可能的计算可以返回 NaN?
    查看>>
    numpy 数组 dtype 在 Windows 10 64 位机器中默认为 int32
    查看>>
    numpy 数组与矩阵的乘法理解
    查看>>
    NumPy 数组拼接方法-ChatGPT4o作答
    查看>>
    numpy 用法
    查看>>
    Numpy 科学计算库详解
    查看>>
    Numpy.fft.fft和numpy.fft.fftfreq有什么不同
    查看>>
    numpy.linalg.norm(求范数)
    查看>>
    Numpy.ndarray对象不可调用
    查看>>
    Numpy.VisibleDeproationWarning:从不整齐的嵌套序列创建ndarray
    查看>>